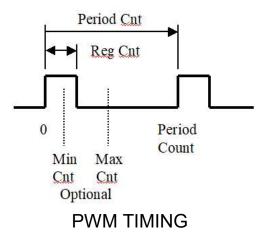


16-Bit Pulse Width Modulator and Delta Sigma Digital to Analog Converter

Both of these modules are designed to connect to one 16-bit output port.


16-Bit Pulse Width Modulator PWM):

Macro Name	Ident	Length	Logic Elements	Memory (bits)
pwm16_ctrl	NA	NA	67	0

This outputs a pulse width asserted for a count as defined by the 16bit input register value. There are five input parameters that setup the timing of the PWM.

clk_divide:	The count divider for the system clock (50 Mhz nominally). PWM clock = 50Mhz/Divider. For
	example, a clock divide of 50 creates a PWM clock rate of 1Mhz. (1-65535, zero is not valid.)
period cnt:	Number of PWM clocks in a cycle (1-65535).
min_count:	Minimum input resister PWM count, a register input
	less than this value will be set to this value. Set to 0 if not used.
max_count:	Maximum input resister PWM count, a register input greater than this value will be set to this value. Set to 65535 if not used.
invert_output:	Inverts the output pulse. "0" results in asserted high output, "1" resusts in an asserted low output.
pwm_cnt_in:	The PWM will be asserted at "0" until this count, unless overridden by min/max count.

The timing of the macro is shown in the diagram below.

Delta Sigma Digital to Analog Converter:

Macro Name	Ident	Length	Logic Elements	Memory (bits)
dac_deltasig	NA	NA	52	0

The delta sigma converter uses pulse width modulation to output an analog signal on a digital pin. It is expected that the output signal will have some analog filtering. There is one parameter input along with the register input as shown below.

- nbits: Selects the number of digital to analog bits equivalent for the input/output signal.
- din: The signed digital input to be converted to an analog equivalent on the dout pin.

Revisions

September 2023 – Base